Adding and Subtracting Polynomials

Adding Polynomials

Step 1: Group like terms together

* same variable

* same exponent

Step 2: Simplify

* Combine like terms

dhe O

1.
$$(2x^2 - 4x + 3) + (x^2 + 5x - 1)$$

3.
$$(6 + x^2) + (2x - 8)$$

 $\times^2 + 2 \times -2$

2.
$$(5x - 3x^2 + 1) + (-6 + x^2 - 2x)$$

$$-2x^2+3x-5$$

4.
$$(2 - x^2 + x) + (x^2 - 2x) + 4$$

0

№666

8

Subtracting Polynomials

\$

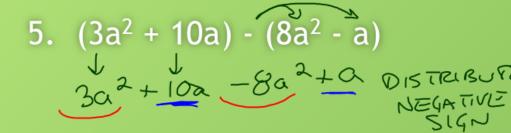
Step 1: Distribute the subtraction sign to the () after it.

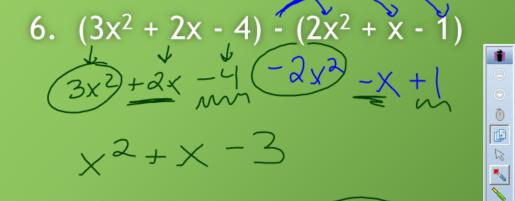
ADD

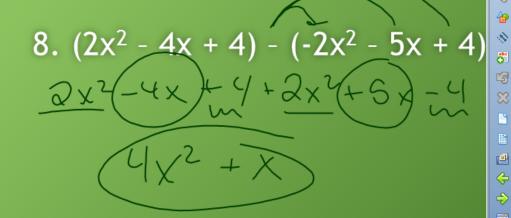
Step 2: Group like terms

Step 3: Simplify

* Combine like terms




[X]


№№№№

...

7.
$$(7x - 3) - (9x - 2)$$

 $7x - 3 - 9x + 2$

Application Problems

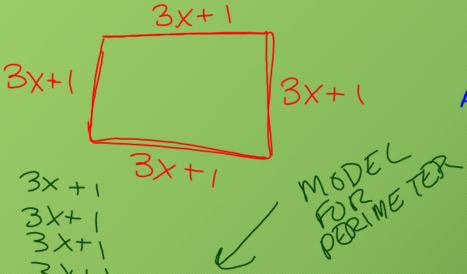
Find the perimeter of the rectangle below

PERLIMETER: ADD ALL
THE SIDES

$$5x - 3$$
 $5x - 3$
 $5x - 3$
 $5x - 3$
 $5x - 3$

= 14(3) - 6 = 36ft

What is the perimeter if x = 3



Application Problems

Faris is building a sandbox in his backyard for his son. It is going to be a square. One side length is 3x + 1. What is the model for the perimeter of the sandbox? How much would he need to buy to make the sandbox frame if x = 5?

SINCE WE WANT TO KNOW THE FRAME. (OUTSIDE). WE USE PERIMETER AREA WOULD BE HOW MUCH SAND TO BUY (INSIDE)

on the

Writing and Analyzing Expressions

on the

...

It costs \$20 per hour to bowl and \$3 for shoe rental.

a) Write an expression that models this situation.

b) How much would it cost to bowl for 3 hours?

$$\gamma = 20(3) + 3$$

 $\gamma = 63$

Example 2)
Gamefly charges a one time set up fee and then charges monthly. It can be modeled by the equation y= 4.99x + 10.50.

a) What does 4.99 represent?

MONTHLY COST

b) What does 10.50 represent?

ONE-TIME SET UP FEE

c) What does x represent?

MONTHS

d) What does y represent?

MUNEY! HOW MUCH YOU SPENT



Example 3)

Nancy sold brownies and cupcakes at the bake sale. Brownies were sold for a dollar and cupcakes were sold for \$2.50. She made a total profit of \$31.50 and her profit can be modeled by the expression b + 2.5c = 31.50. If she sold 7 cupcakes how many brownies did she sell?

> 6+25(7)=31.50 6+17.5=31.50 -17.5 -17.5 6 = 14 BROWNIES

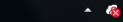
Precision and Accuracy

Analyze and compare measurements for precision and accuracy. Choose an appropriate level of accuracy when reporting measurements.

ohe O

Vocabulary:

- Precision: the level of detail in a measurement. It is determined by the smallest unit or fraction of a unit that you can reasonably measure. DOES NOT MEAN CORRECT!
- Accuracy: the closeness of a measure value to the actual or true value. Smallest amount of error from true value.
- Tolerance: describes the amount by which a measurement is permitted to vary from a specified value.



Comparing Precision of Measurements

Choose the more PRECISE measurement:

A. 0.8 km; 830.2 m

BECAUSE METERS ARE SMALLER THAN KM

B. (2.45 in) 2.5 in

2,45 BECRUSE IT GOES TO THE HUNDREDTH PLACE NOT JUST THE TENTH SPACE

C. (100 cm; 1 m cm ARE SMALLER THAN METERS

Comparing Precision and Accuracy

Ida works in a deli. She is testing the scales at the deli to make sure they are accurate. She uses a weight that is exactly 1 pound and gets the following results:

Scale 2: 1.01 lb Scale 3: 0.98 lb

1-1019= .019

1-1.0(=-.01 |-.98=.02

Which scale is most PRECISE?

Which scale is most ACCURATE? SCALE 2 BECAUSE IT

15 THE CLOSEST TO 1 16 (BY ONLY OI lbs OFF)

